Melanjutkan R gadget sebelumnya, kali ini akan diberikan contoh Analisa Modeling menggunakan R programming yang mudah dibaca
lewat smartphone, analisa menggunakan data 'Housing Values in Suburbs of Boston' menentukan
variable yang paling berpengaruh(Variable Important) terhadap nilai perumahan.
Sebuah contoh penggunaan Machine Learning dengan R programming yang mudah dipelajari dan mudah di aplikasi.
Sebuah contoh penggunaan Machine Learning dengan R programming yang mudah dipelajari dan mudah di aplikasi.
Seperti biasa file terdiri dari file ui dan file server, scriptnya sbb:
ui <-
miniPage(
gadgetTitleBar("Boston Analytic, simple way finding Variable Importance"),
miniTabstripPanel(
miniTabPanel("Data", icon = icon("table"),
miniContentPanel(
dataTableOutput("data"))),
#---keterangan
miniTabPanel("About Boston Data", icon = icon("list-alt"),
miniContentPanel(
dataTableOutput("About"),
h3(strong('Housing Values in Suburbs of Boston')),
# p('Housing Values in Suburbs of Boston',align = 'Justify'),
p('Description : The Boston data frame has 506 rows and 14 columns.',align = 'Justify'),
p('Usage : Boston',align = 'Justify'),
p('Format : This data frame contains the following columns:',align = 'Justify'),
p('1. crim : per capita crime rate by town.',align = 'Justify'),
p('2. zn : proportion of residential land zoned for lots over 25,000 sq.ft.',align = 'Justify'),
p('3. indus : proportion of non-retail business acres per town.',align = 'Justify'),
p('4. chas : Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).',align = 'Justify'),
p('5. nox : nitrogen oxides concentration (parts per 10 million).',align = 'Justify'),
p('6. rm : average number of rooms per dwelling.',align = 'Justify'),
p('7. age : proportion of owner-occupied units built prior to 1940.',align = 'Justify'),
p('8. dis : weighted mean of distances to five Boston employment centres.',align = 'Justify'),
p('9. rad : index of accessibility to radial highways.',align = 'Justify'),
p('10. tax : full-value property-tax rate per 10,000 dollar.',align = 'Justify'),
p('11. ptratio : pupil-teacher ratio by town.',align = 'Justify'),
p('12. black : 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town.',align = 'Justify'),
p('13. lstat : lower status of the population (percent).',align = 'Justify'),
p('14. medv : median value of owner-occupied homes per 1000s dollar.',align = 'Justify'))),
#
miniTabPanel("Plot Model",icon = icon("area-chart"),
miniContentPanel(
plotOutput("model"))),
miniTabPanel("Variable Important",icon = icon("area-chart"),
miniContentPanel(
verbatimTextOutput(("var_importance")))),
miniTabPanel("Variable imp",icon = icon("table"),
miniContentPanel(
plotOutput("pg")))
))
miniPage(
gadgetTitleBar("Boston Analytic, simple way finding Variable Importance"),
miniTabstripPanel(
miniTabPanel("Data", icon = icon("table"),
miniContentPanel(
dataTableOutput("data"))),
#---keterangan
miniTabPanel("About Boston Data", icon = icon("list-alt"),
miniContentPanel(
dataTableOutput("About"),
h3(strong('Housing Values in Suburbs of Boston')),
# p('Housing Values in Suburbs of Boston',align = 'Justify'),
p('Description : The Boston data frame has 506 rows and 14 columns.',align = 'Justify'),
p('Usage : Boston',align = 'Justify'),
p('Format : This data frame contains the following columns:',align = 'Justify'),
p('1. crim : per capita crime rate by town.',align = 'Justify'),
p('2. zn : proportion of residential land zoned for lots over 25,000 sq.ft.',align = 'Justify'),
p('3. indus : proportion of non-retail business acres per town.',align = 'Justify'),
p('4. chas : Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).',align = 'Justify'),
p('5. nox : nitrogen oxides concentration (parts per 10 million).',align = 'Justify'),
p('6. rm : average number of rooms per dwelling.',align = 'Justify'),
p('7. age : proportion of owner-occupied units built prior to 1940.',align = 'Justify'),
p('8. dis : weighted mean of distances to five Boston employment centres.',align = 'Justify'),
p('9. rad : index of accessibility to radial highways.',align = 'Justify'),
p('10. tax : full-value property-tax rate per 10,000 dollar.',align = 'Justify'),
p('11. ptratio : pupil-teacher ratio by town.',align = 'Justify'),
p('12. black : 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town.',align = 'Justify'),
p('13. lstat : lower status of the population (percent).',align = 'Justify'),
p('14. medv : median value of owner-occupied homes per 1000s dollar.',align = 'Justify'))),
#
miniTabPanel("Plot Model",icon = icon("area-chart"),
miniContentPanel(
plotOutput("model"))),
miniTabPanel("Variable Important",icon = icon("area-chart"),
miniContentPanel(
verbatimTextOutput(("var_importance")))),
miniTabPanel("Variable imp",icon = icon("table"),
miniContentPanel(
plotOutput("pg")))
))
library(shiny)
library(miniUI)
library(ggplot2)
library(dplyr)
library(MASS)
library(randomForest)
data <- Boston
data
dt1 <- data[ ,-4]
dt1
spl <- sample(nrow(dt1),nrow(dt1)*0.7)
train <- dt1[spl, ]
test <- dt1[-spl, ]
model <- randomForest(medv~., data = train)
pmod <- plot(model)
pmod+theme_linedraw()
pmod
pm <- summary(model)
pm
pv <- varImpPlot(model)
pv
var_importance <- data_frame(variable = setdiff(colnames(train), "medv"),
importance = as.vector(importance(model)))
var_importance <- arrange(var_importance, desc(importance))
#var_importance
var_importance$variable <- factor(var_importance$variable, levels=var_importance$variable)
pg <- ggplot(data = var_importance, aes(x = variable, y = importance))+
geom_bar(stat = "identity")+ggtitle("Varible Importance")+theme_linedraw()
pg
server <- function(input, output, session) {
output$data <- renderDataTable({
data
})
output$model <- renderPlot({
plot(model)
})
output$var_importance<- renderPrint({
var_importance
})
output$pg <- renderPlot({
pg
})
observeEvent(input$done, {
stopApp(TRUE)
})
}
library(miniUI)
library(ggplot2)
library(dplyr)
library(MASS)
library(randomForest)
data <- Boston
data
dt1 <- data[ ,-4]
dt1
spl <- sample(nrow(dt1),nrow(dt1)*0.7)
train <- dt1[spl, ]
test <- dt1[-spl, ]
model <- randomForest(medv~., data = train)
pmod <- plot(model)
pmod+theme_linedraw()
pmod
pm <- summary(model)
pm
pv <- varImpPlot(model)
pv
var_importance <- data_frame(variable = setdiff(colnames(train), "medv"),
importance = as.vector(importance(model)))
var_importance <- arrange(var_importance, desc(importance))
#var_importance
var_importance$variable <- factor(var_importance$variable, levels=var_importance$variable)
pg <- ggplot(data = var_importance, aes(x = variable, y = importance))+
geom_bar(stat = "identity")+ggtitle("Varible Importance")+theme_linedraw()
pg
server <- function(input, output, session) {
output$data <- renderDataTable({
data
})
output$model <- renderPlot({
plot(model)
})
output$var_importance<- renderPrint({
var_importance
})
output$pg <- renderPlot({
pg
})
observeEvent(input$done, {
stopApp(TRUE)
})
}
Selanjutnya tinggal di upload di server shiny, file dibuat untuk versi gadget.
Referensi:
Kursus R programming
Tidak ada komentar:
Posting Komentar