Dampak saham Boeing akibat jatuhnya Lion Air JT610.
Setelah Lion Air JT610 jatuh di perairan Krawang sekitar Jakarta hari Senin 29 Oktober 2018
, saya mencoba menengok saham Boeing, apa dampaknya?.
Selanjutnya saya mencoba membandingkan dengan Saham Airbus sebagai saingannya, berikut saya tuliskan R scriptnya dalam file RMarkdown dan saya upload di web Rpubs.
Setelah Lion Air JT610 jatuh di perairan Krawang sekitar Jakarta hari Senin 29 Oktober 2018
, saya mencoba menengok saham Boeing, apa dampaknya?.
Lion Air JT 610 crash |
Selanjutnya saya mencoba membandingkan dengan Saham Airbus sebagai saingannya, berikut saya tuliskan R scriptnya dalam file RMarkdown dan saya upload di web Rpubs.
Chart Sham Boeing |
---
title: "bpe 313: Boeing Stock Visualization"
subtitle: "Dashboard Laboratory"
author: "bambangpe"
date: "March 13, 2019"
output:
flexdashboard::flex_dashboard:
orientation: rows
social: menu
source_code: embed
---
```{r setup, include=FALSE, message=FALSE}
# list of libraries we are using in this dashboard
library(flexdashboard)
library(quantmod)
library(plyr)
library(dygraphs)
library(lubridate)
library(RColorBrewer)
library(DT)
```
# Intro text {.sidebar}
## **Trend Analysis**
* This dashboard only displays the movement of shares of 2 Boeing (BA) and Airbus (EADSY) airlines, observing the movements of Boeing's shares after the tragedy of the fall of a Boeing 737 Max8 aircraft. Trends are taken in a 1 year period
* Boeing shares began to decline after the tragedy of the crash on Sunday on March 10, 2019
* While Airbus shares remain flat not affected.
# Stock Dashboard
Column {data-width=550}
-----------------------------------------------------------------------
### Stock Closing Prices - 1 year trend
```{r,echo=FALSE, message = FALSE}
ticker <- c("BA","EADSY")
invisible(getSymbols(ticker, from="2018-03-13", to="2019-03-13"))
closing_price <- do.call(merge, lapply(ticker, function(x) Cl(get(x))))
dateperiod<-c("2018-03-13","2019-03-13")
dygraph(closing_price, main="Stock Closing Price (USD)", group="Stock") %>%
dyAxis("y", label="Closing Price (USD)") %>%
dyOptions(axisLineWidth = 2.0, colors = RColorBrewer::brewer.pal(6, "Set1")) %>%
dyHighlight(highlightSeriesBackgroundAlpha = 1.0,
highlightSeriesOpts = list(strokeWidth = 2)) %>%
dyRangeSelector(height = 60)
```
#Fundamental Analysis
* In this section displays analysis data from two Boeing and Airbus stocks, namely, price ratio (P-E Ratio), Price EPS Estimate, and Dividend Yield.
* P-E Ratio from the analysis table shows that Boeing shares are cheaper than Airbush shares, and prices tend to decline.
* While Airbus's Dividend Yield is larger than Boeing's, its stock price is also expected to be stable.
```{r}
what_metrics <- yahooQF(c("Price/Sales",
"P/E Ratio",
"Price/EPS Estimate Next Year",
"PEG Ratio",
"Dividend Yield",
"Market Capitalization"))
tickers <- c("BA","EADSY")
# Not all the metrics are returned by Yahoo.
metrics <- getQuote(paste(tickers, sep="", collapse=";"), what=what_metrics)
#Add tickers as the first column and remove the first column which had date stamps
metrics <- data.frame(Symbol=tickers, metrics[,2:length(metrics)])
#Change colnames
colnames(metrics) <- c("Symbol", "P-E Ratio", "Price EPS Estimate Next Year", "Div Yield", "Market Cap")
#Persist this to the csv file
#write.csv(metrics, "FinancialMetrics.csv", row.names=FALSE)
DT::datatable(metrics)
```
# Candlestick Charts
Column {.tabset}
-----------------------------------------------------------------------
### Boeing
```{r message=FALSE, warning=FALSE}
startdate <- ymd("2018-11-13")
invisible(getSymbols("BA", src = "yahoo", from=startdate))
NBA <- BA[,-5]
colnames(NBA) <- c("Open","High","Low","Close","Adjusted")
```
```{r message=FALSE, warning=FALSE}
dygraph(BA, main = "Boeing - Past 5 Months Trend") %>%
dyAxis("y", label="Price (USD)") %>%
dyOptions(axisLineWidth = 2, colors = RColorBrewer::brewer.pal(5, "Set1")) %>%
dyCandlestick()
```
### Airbus
```{r message=FALSE, warning=FALSE}
startdate <- ymd("2018-11-13")
invisible(getSymbols("EADSY", src = "yahoo", from=startdate))
NEADSY <- EADSY[,-5]
colnames(NEADSY) <- c("Open","High","Low","Close","Adjusted")
```
```{r message=FALSE, warning=FALSE}
dygraph(EADSY, main = "Airbus - Past 5 Months Trend") %>%
dyAxis("y", label="Price (USD)")%>%
dyOptions(axisLineWidth = 1, colors = RColorBrewer::brewer.pal(5, "Set1")) %>%
dyCandlestick()
```
Klik:title: "bpe 313: Boeing Stock Visualization"
subtitle: "Dashboard Laboratory"
author: "bambangpe"
date: "March 13, 2019"
output:
flexdashboard::flex_dashboard:
orientation: rows
social: menu
source_code: embed
---
```{r setup, include=FALSE, message=FALSE}
# list of libraries we are using in this dashboard
library(flexdashboard)
library(quantmod)
library(plyr)
library(dygraphs)
library(lubridate)
library(RColorBrewer)
library(DT)
```
# Intro text {.sidebar}
## **Trend Analysis**
* This dashboard only displays the movement of shares of 2 Boeing (BA) and Airbus (EADSY) airlines, observing the movements of Boeing's shares after the tragedy of the fall of a Boeing 737 Max8 aircraft. Trends are taken in a 1 year period
* Boeing shares began to decline after the tragedy of the crash on Sunday on March 10, 2019
* While Airbus shares remain flat not affected.
# Stock Dashboard
Column {data-width=550}
-----------------------------------------------------------------------
### Stock Closing Prices - 1 year trend
```{r,echo=FALSE, message = FALSE}
ticker <- c("BA","EADSY")
invisible(getSymbols(ticker, from="2018-03-13", to="2019-03-13"))
closing_price <- do.call(merge, lapply(ticker, function(x) Cl(get(x))))
dateperiod<-c("2018-03-13","2019-03-13")
dygraph(closing_price, main="Stock Closing Price (USD)", group="Stock") %>%
dyAxis("y", label="Closing Price (USD)") %>%
dyOptions(axisLineWidth = 2.0, colors = RColorBrewer::brewer.pal(6, "Set1")) %>%
dyHighlight(highlightSeriesBackgroundAlpha = 1.0,
highlightSeriesOpts = list(strokeWidth = 2)) %>%
dyRangeSelector(height = 60)
```
#Fundamental Analysis
* In this section displays analysis data from two Boeing and Airbus stocks, namely, price ratio (P-E Ratio), Price EPS Estimate, and Dividend Yield.
* P-E Ratio from the analysis table shows that Boeing shares are cheaper than Airbush shares, and prices tend to decline.
* While Airbus's Dividend Yield is larger than Boeing's, its stock price is also expected to be stable.
```{r}
what_metrics <- yahooQF(c("Price/Sales",
"P/E Ratio",
"Price/EPS Estimate Next Year",
"PEG Ratio",
"Dividend Yield",
"Market Capitalization"))
tickers <- c("BA","EADSY")
# Not all the metrics are returned by Yahoo.
metrics <- getQuote(paste(tickers, sep="", collapse=";"), what=what_metrics)
#Add tickers as the first column and remove the first column which had date stamps
metrics <- data.frame(Symbol=tickers, metrics[,2:length(metrics)])
#Change colnames
colnames(metrics) <- c("Symbol", "P-E Ratio", "Price EPS Estimate Next Year", "Div Yield", "Market Cap")
#Persist this to the csv file
#write.csv(metrics, "FinancialMetrics.csv", row.names=FALSE)
DT::datatable(metrics)
```
# Candlestick Charts
Column {.tabset}
-----------------------------------------------------------------------
### Boeing
```{r message=FALSE, warning=FALSE}
startdate <- ymd("2018-11-13")
invisible(getSymbols("BA", src = "yahoo", from=startdate))
NBA <- BA[,-5]
colnames(NBA) <- c("Open","High","Low","Close","Adjusted")
```
```{r message=FALSE, warning=FALSE}
dygraph(BA, main = "Boeing - Past 5 Months Trend") %>%
dyAxis("y", label="Price (USD)") %>%
dyOptions(axisLineWidth = 2, colors = RColorBrewer::brewer.pal(5, "Set1")) %>%
dyCandlestick()
```
### Airbus
```{r message=FALSE, warning=FALSE}
startdate <- ymd("2018-11-13")
invisible(getSymbols("EADSY", src = "yahoo", from=startdate))
NEADSY <- EADSY[,-5]
colnames(NEADSY) <- c("Open","High","Low","Close","Adjusted")
```
```{r message=FALSE, warning=FALSE}
dygraph(EADSY, main = "Airbus - Past 5 Months Trend") %>%
dyAxis("y", label="Price (USD)")%>%
dyOptions(axisLineWidth = 1, colors = RColorBrewer::brewer.pal(5, "Set1")) %>%
dyCandlestick()
```
https://rpubs.com/bambangpe/476039
https://bambangpe.shinyapps.io/kursus-r2/
Tidak ada komentar:
Posting Komentar