Memilih model yang tepat untuk analisa bisnis.
Melanjutkan pembicaraan
Exploratory Data Analysis di posting sebelumnya, di sini akan dibahas 2 model regresi, yaitu
Logistic Regression dan
Random Forest Regression. 2 Model ini banyak dipakai dalam bisnis ecommerce, juga bisnis sejenis lainnya, dimana banyak variable yang saling terkait, sehingga sulit bagi manajemen traditional untuk sekedar menebak variable mana yang paling berpengaruh terhadap kelangsungan bisnisnya.
|
USA Map |
Karena orientasi bisnis adalah profit atas ROI(Rate of Investmen), maka perlu dicari model yang tepat, agar manajemen tidak meraba raba bahkan menebak variable mana yang paling berpengaruh, karena hal tersebut akan beresiko tinggi dan mengeluarkan banyak biaya jika salah dalam mengeksekusi kebijakan.
Di akhir artikel saya akan menyajikan skenario bisnis hipotetis di mana dengan menggunakan model yang tepat dapat memproyeksikan penghematan tahunan sebesar $4juta dalam biaya retensi pelanggan. Penghematan biaya ini dicapai dengan mengoptimalkan ambang model Logistic Regression. Di sini dibuat beberapa asumsi dasar tentang akuisisi pelanggan dan biaya retensi pelanggan, untuk model perusahaan telekomunikasi.
#---Model prediction
Akan diuji terlebih dahulu antara Model Logistic Regression dan Model Random Forest
dengan test validasi dan Kfold validation untuk menghindari over fitting, berikut ulasannya dalam script R: