Kamis, 11 April 2019

Test kredibilitas client anda

Bagaimana caranya mengetahui sikap seseorang? mudah kalo kita sering bergaul dengannya, apalagi kalo teman kita cuma sedikit, gimana kalo lebih dari 100, 1000, atau bahkan lebih dari jutaan! apalagi sampai milyaran.


Kasus seperti ini mulanya yang mengilhami manusia untuk selalu mencari cara yang mudah, cepat, murah dan tepat. Dengan menggunakan machine learning terselesaikan masalahnya.

Kami coba membuat aplikasi untuk menguji kredibilitas client, data sintetis diambil dari sini, aplikasi ditulis dengan bahasa R dan disimpan dalam server shiny. Sebagian scriptnya ada di sini:




library(shiny)
library(dplyr)
Dt <- read.csv('./data/german_credit-1.csv')
server <- shinyServer(
  function(input, output) {
  MyData <- reactive({
    if(input$RD1==2){
    inFile<-input$file1
    if (is.null(inFile))
      return(NULL)
    read.csv(inFile$datapath, header=input$header, sep=input$sep,
             quote=input$quote)
 
    }else{
      Dt
    }
})
  Col<-reactive({input$Col})
  Creditability<-reactive({input$Creditability})
  Account.Balance <-reactive({input$Account.Balance})
  PaymentStatusofPreviousCredit<-reactive({input$PaymentStatusofPreviousCredit})
  Purpose <-reactive({input$Purpose})
  Credit.Amount<-reactive({input$Credit.Amoun})
  Value.Savings.Stocks<-reactive({input$Value.Savings.Stocks})

  Length.of.current.employment <-reactive({input$Length.of.current.employmentn})
  Instalment.per.cent<-reactive({input$Instalment.per.cen})
  Sex...Marital.Status<-reactive({input$Sex...Marital.Status})

  Guarantors<-reactive({input$Guarantors<-reactive})
  Duration.in.Current.address<-reactive({input$Duration.in.Current.address})
  Most.valuable.available.asset<-reactive({input$Most.valuable.available.asset})

  Age..years.<-reactive({input$Age..years.})
  Concurrent.Credits<-reactive({input$Concurrent.Credits})
  Type.of.apartment<-reactive({input$Type.of.apartment})

  No.of.Credits.at.this.Bank<-reactive({input$No.of.Credits.at.this.Bank})
  Occupation<-reactive({input$Occupation})
  No.of.dependents<-reactive({input$No.of.dependents})

  Telephone<-reactive({input$Telephone})
  Foreign.Worker<-reactive({input$Foreign.Worker})

    output$oid1 = renderPrint({input$Account.Balance})
    output$oid2 = renderPrint({input$Duration.of.Credit..month.})
    output$oid3 = renderPrint({input$PaymentStatusofPreviousCredit})
 
    output$oid4 = renderPrint({input$Purpose})
    output$oid5 = renderPrint({input$Credit.Amount})
    output$oid6 = renderPrint({input$Value.Savings.Stocks})
 
    output$oid7 = renderPrint({input$Length.of.current.employment})
    output$oid8 = renderPrint({input$Instalment.per.cent})
    output$oid9 = renderPrint({input$Sex...Marital.Status})
 
    output$oid10 = renderPrint({input$Guarantors})
    output$oid11 = renderPrint({input$Duration.in.Current.address})
    output$oid12 = renderPrint({input$Most.valuable.available.asset})
 
    output$oid13 = renderPrint({input$Age..years.})
    output$oid14 = renderPrint({input$Concurrent.Credits})
    output$oid15 = renderPrint({input$Type.of.apartment})
 
    output$oid16 = renderPrint({input$No.of.Credits.at.this.Bank})
    output$oid17 = renderPrint({input$Occupation})
    output$oid18 = renderPrint({input$No.of.dependents})
 
    output$oid19 = renderPrint({input$Telephone})
    output$oid20 = renderPrint({input$Foreign.Worker})

      new2<-reactive({
      input$update
      isolate(data.frame(
                 Account.Balance=input$Account.Balance, Duration.of.Credit..month.=input$Duration.of.Credit..month.,
                 PaymentStatusofPreviousCredit=input$PaymentStatusofPreviousCredit,
               
                 Purpose=input$Purpose, Credit.Amount=input$Credit.Amount, Value.Savings.Stocks=input$Value.Savings.Stocks,
                 Length.of.current.employment=input$Length.of.current.employment, Instalment.per.cent=input$Instalment.per.cent,
                 Sex...Marital.Status=input$Sex...Marital.Status,
               
                 Guarantors=input$Guarantors, Duration.in.Current.address=input$Duration.in.Current.address,
                 Most.valuable.available.asset=input$Most.valuable.available.asset,
                 Age..years.=input$Age..years., Concurrent.Credits=input$Concurrent.Credits,
               
                 Type.of.apartment=input$Type.of.apartment, No.of.Credits.at.this.Bank=input$No.of.Credits.at.this.Bank,
                 Occupation=input$Occupation, No.of.dependents=input$No.of.dependents,
               
                 Telephone=input$Telephone, Foreign.Worker=input$Foreign.Worker))
      })

  

Tidak ada komentar:

Posting Komentar

Financial Institutions Survey Analysis Part 1

Financial Institutions Survey Analysis  1. Data     Survey data consist of the 99 observations and 73 variables. This study focuses on asses...