Bagaimana caranya mengetahui sikap seseorang? mudah kalo kita sering bergaul dengannya, apalagi kalo teman kita cuma sedikit, gimana kalo lebih dari 100, 1000, atau bahkan lebih dari jutaan! apalagi sampai milyaran.
Kasus seperti ini mulanya yang mengilhami manusia untuk selalu mencari cara yang mudah, cepat, murah dan tepat. Dengan menggunakan machine learning terselesaikan masalahnya.
Kami coba membuat aplikasi untuk menguji kredibilitas client, data sintetis diambil dari sini, aplikasi ditulis dengan bahasa R dan disimpan dalam server shiny. Sebagian scriptnya ada di sini:
Kasus seperti ini mulanya yang mengilhami manusia untuk selalu mencari cara yang mudah, cepat, murah dan tepat. Dengan menggunakan machine learning terselesaikan masalahnya.
Kami coba membuat aplikasi untuk menguji kredibilitas client, data sintetis diambil dari sini, aplikasi ditulis dengan bahasa R dan disimpan dalam server shiny. Sebagian scriptnya ada di sini:
library(shiny)
library(dplyr)
Dt <- read.csv('./data/german_credit-1.csv')
server <- shinyServer(
function(input, output) {
MyData <- reactive({
if(input$RD1==2){
inFile<-input$file1
if (is.null(inFile))
return(NULL)
read.csv(inFile$datapath, header=input$header, sep=input$sep,
quote=input$quote)
}else{
Dt
}
})
Col<-reactive({input$Col})
Creditability<-reactive({input$Creditability})
Account.Balance <-reactive({input$Account.Balance})
PaymentStatusofPreviousCredit<-reactive({input$PaymentStatusofPreviousCredit})
Purpose <-reactive({input$Purpose})
Credit.Amount<-reactive({input$Credit.Amoun})
Value.Savings.Stocks<-reactive({input$Value.Savings.Stocks})
Length.of.current.employment <-reactive({input$Length.of.current.employmentn})
Instalment.per.cent<-reactive({input$Instalment.per.cen})
Sex...Marital.Status<-reactive({input$Sex...Marital.Status})
Guarantors<-reactive({input$Guarantors<-reactive})
Duration.in.Current.address<-reactive({input$Duration.in.Current.address})
Most.valuable.available.asset<-reactive({input$Most.valuable.available.asset})
Age..years.<-reactive({input$Age..years.})
Concurrent.Credits<-reactive({input$Concurrent.Credits})
Type.of.apartment<-reactive({input$Type.of.apartment})
No.of.Credits.at.this.Bank<-reactive({input$No.of.Credits.at.this.Bank})
Occupation<-reactive({input$Occupation})
No.of.dependents<-reactive({input$No.of.dependents})
Telephone<-reactive({input$Telephone})
Foreign.Worker<-reactive({input$Foreign.Worker})
output$oid1 = renderPrint({input$Account.Balance})
output$oid2 = renderPrint({input$Duration.of.Credit..month.})
output$oid3 = renderPrint({input$PaymentStatusofPreviousCredit})
output$oid4 = renderPrint({input$Purpose})
output$oid5 = renderPrint({input$Credit.Amount})
output$oid6 = renderPrint({input$Value.Savings.Stocks})
output$oid7 = renderPrint({input$Length.of.current.employment})
output$oid8 = renderPrint({input$Instalment.per.cent})
output$oid9 = renderPrint({input$Sex...Marital.Status})
output$oid10 = renderPrint({input$Guarantors})
output$oid11 = renderPrint({input$Duration.in.Current.address})
output$oid12 = renderPrint({input$Most.valuable.available.asset})
output$oid13 = renderPrint({input$Age..years.})
output$oid14 = renderPrint({input$Concurrent.Credits})
output$oid15 = renderPrint({input$Type.of.apartment})
output$oid16 = renderPrint({input$No.of.Credits.at.this.Bank})
output$oid17 = renderPrint({input$Occupation})
output$oid18 = renderPrint({input$No.of.dependents})
output$oid19 = renderPrint({input$Telephone})
output$oid20 = renderPrint({input$Foreign.Worker})
new2<-reactive({
input$update
isolate(data.frame(
Account.Balance=input$Account.Balance, Duration.of.Credit..month.=input$Duration.of.Credit..month.,
PaymentStatusofPreviousCredit=input$PaymentStatusofPreviousCredit,
Purpose=input$Purpose, Credit.Amount=input$Credit.Amount, Value.Savings.Stocks=input$Value.Savings.Stocks,
Length.of.current.employment=input$Length.of.current.employment, Instalment.per.cent=input$Instalment.per.cent,
Sex...Marital.Status=input$Sex...Marital.Status,
Guarantors=input$Guarantors, Duration.in.Current.address=input$Duration.in.Current.address,
Most.valuable.available.asset=input$Most.valuable.available.asset,
Age..years.=input$Age..years., Concurrent.Credits=input$Concurrent.Credits,
Type.of.apartment=input$Type.of.apartment, No.of.Credits.at.this.Bank=input$No.of.Credits.at.this.Bank,
Occupation=input$Occupation, No.of.dependents=input$No.of.dependents,
Telephone=input$Telephone, Foreign.Worker=input$Foreign.Worker))
})
library(dplyr)
Dt <- read.csv('./data/german_credit-1.csv')
server <- shinyServer(
function(input, output) {
MyData <- reactive({
if(input$RD1==2){
inFile<-input$file1
if (is.null(inFile))
return(NULL)
read.csv(inFile$datapath, header=input$header, sep=input$sep,
quote=input$quote)
}else{
Dt
}
})
Col<-reactive({input$Col})
Creditability<-reactive({input$Creditability})
Account.Balance <-reactive({input$Account.Balance})
PaymentStatusofPreviousCredit<-reactive({input$PaymentStatusofPreviousCredit})
Purpose <-reactive({input$Purpose})
Credit.Amount<-reactive({input$Credit.Amoun})
Value.Savings.Stocks<-reactive({input$Value.Savings.Stocks})
Length.of.current.employment <-reactive({input$Length.of.current.employmentn})
Instalment.per.cent<-reactive({input$Instalment.per.cen})
Sex...Marital.Status<-reactive({input$Sex...Marital.Status})
Guarantors<-reactive({input$Guarantors<-reactive})
Duration.in.Current.address<-reactive({input$Duration.in.Current.address})
Most.valuable.available.asset<-reactive({input$Most.valuable.available.asset})
Age..years.<-reactive({input$Age..years.})
Concurrent.Credits<-reactive({input$Concurrent.Credits})
Type.of.apartment<-reactive({input$Type.of.apartment})
No.of.Credits.at.this.Bank<-reactive({input$No.of.Credits.at.this.Bank})
Occupation<-reactive({input$Occupation})
No.of.dependents<-reactive({input$No.of.dependents})
Telephone<-reactive({input$Telephone})
Foreign.Worker<-reactive({input$Foreign.Worker})
output$oid1 = renderPrint({input$Account.Balance})
output$oid2 = renderPrint({input$Duration.of.Credit..month.})
output$oid3 = renderPrint({input$PaymentStatusofPreviousCredit})
output$oid4 = renderPrint({input$Purpose})
output$oid5 = renderPrint({input$Credit.Amount})
output$oid6 = renderPrint({input$Value.Savings.Stocks})
output$oid7 = renderPrint({input$Length.of.current.employment})
output$oid8 = renderPrint({input$Instalment.per.cent})
output$oid9 = renderPrint({input$Sex...Marital.Status})
output$oid10 = renderPrint({input$Guarantors})
output$oid11 = renderPrint({input$Duration.in.Current.address})
output$oid12 = renderPrint({input$Most.valuable.available.asset})
output$oid13 = renderPrint({input$Age..years.})
output$oid14 = renderPrint({input$Concurrent.Credits})
output$oid15 = renderPrint({input$Type.of.apartment})
output$oid16 = renderPrint({input$No.of.Credits.at.this.Bank})
output$oid17 = renderPrint({input$Occupation})
output$oid18 = renderPrint({input$No.of.dependents})
output$oid19 = renderPrint({input$Telephone})
output$oid20 = renderPrint({input$Foreign.Worker})
new2<-reactive({
input$update
isolate(data.frame(
Account.Balance=input$Account.Balance, Duration.of.Credit..month.=input$Duration.of.Credit..month.,
PaymentStatusofPreviousCredit=input$PaymentStatusofPreviousCredit,
Purpose=input$Purpose, Credit.Amount=input$Credit.Amount, Value.Savings.Stocks=input$Value.Savings.Stocks,
Length.of.current.employment=input$Length.of.current.employment, Instalment.per.cent=input$Instalment.per.cent,
Sex...Marital.Status=input$Sex...Marital.Status,
Guarantors=input$Guarantors, Duration.in.Current.address=input$Duration.in.Current.address,
Most.valuable.available.asset=input$Most.valuable.available.asset,
Age..years.=input$Age..years., Concurrent.Credits=input$Concurrent.Credits,
Type.of.apartment=input$Type.of.apartment, No.of.Credits.at.this.Bank=input$No.of.Credits.at.this.Bank,
Occupation=input$Occupation, No.of.dependents=input$No.of.dependents,
Telephone=input$Telephone, Foreign.Worker=input$Foreign.Worker))
})
Tidak ada komentar:
Posting Komentar